
Software Design Document
Version 1.0

8 February 2022

Team Truthseeker

Garry Ancheta
Georgia Buchanan

Jaime Garcia Gomez
Kyler Carling

Project Sponsor

NOBL Media – Jacob Bailly

Team Faculty Mentor

Felicity H. Escarzaga

Accepted as baseline requirements for the project:

For the Client:

For the Team:

Table of Contents

1- INTRODUCTION 1

2 - IMPLEMENTATION OVERVIEW 3

3 - ARCHITECTURAL OVERVIEW 5

4 - MODULE AND INTERFACE DESCRIPTIONS 7

SECTION 4.1 - WEB APPLICATION 7
SECTION 4.2 - API 14

5 - IMPLEMENTATION PLAN 17

6 - CONCLUSION 19

1

1 - Introduction

Today, misinformation is widespread on the internet. Different platforms
intentionally spread misinformation to harm individuals and groups. The internet,
however, is just another representation of many businesses through websites. For
most businesses, websites are another source of income through the showing of
advertisements. Demand Site Platforms (DSPs) are what allow placement of
advertisements on websites and currently, DSPs deal with misinformation by
blacklisting or demonetizing websites, but only do so when they are actively told
to by the advertiser. Thus, an advertiser can be damaged by being associated
with misinformation which is a waste of money since it might deter customers
from supporting the advertiser when it is found that the advertiser appears to be
supporting misinformation.

This is where the Misinformation and Credible News Analysis Tool comes in; the
tool allows advertisers the choice not to support businesses that spread
misinformation by rating how credible a page is on a website and deciding
whether an advertisement should be placed on that page based on its
credibility. Unlike the current process where businesses must tell DSPs which
websites the advertisers’ ads should not be placed on, NOBL Media has the
capability to automate the process by allowing advertisers to simply tell NOBL
Media what credibility rating a website should have for their advertisements to
be placed on.

NOBL Media collects data over advertisement information for advertisers who
choose to use NOBL Media’s services. However, they do not have a way for their
customers to visualize or obtain this data in any way. This is where Team
Truthseeker steps in with two components: a web application and an
Application Programming Interface (API). These two components allow NOBL
Media to solve the problem with their business flow through the implementation
of the following features:

2

1. The web application must be able to create and authenticate customer
accounts to allow secure access to the customer’s data using integrated
technology Auth0.

2. The API must be able to handle user authentication requests. Once
authenticated, the API must handle a request to be parsed into NOBL’S
MySQL database.

3. The web application must be able to abstract JSON data coming from
the NOBL Media MySQL database and represent these to customers
through graphs and charts using technologies such as ECharts.

4. The API must be able to retrieve the JSON data from the NOBL Media
MySQL database and return an HTTP 200 level response with JSON data to
NOBL’s web application or the client's own site.

5. The web application must allow customers to download customer ad
data in a formatted file such as in a CSV or Excel file.

Once that information is collected, advertisers will be able to see how their
advertisement is performing in terms of supporting misinformation and how
much money the advertiser is losing due to misinformation through a
user-interactive web application. Through the web application, users will be
able to log in to see their respective campaign information, such as viewing
different graphs and charts that depict how well their advertisement campaign
is doing, how many non-credible sites it has avoided, and their overall NOBL
score. Ultimately, the web application offers a way for clients to actually see
that they receive more interaction with their advertisements when they are
putting them on more ethical sites.

3

Chapter 2 - Implementation Overview

NOBL Media has an impressive AI that reads web pages and assesses how
brand friendly they are and even holds records of it’s analysis with metrics in their
database. However, NOBL Media’s Misinformation and Credible News Analysis
Tool does not have a web application for NOBL’s clients to interface with. In
other words, NOBL client’s data is all stored in NOBL servers and there is no way
for clients to analyze and act on their very own campaign data. Team
Truthseeker is developing the web application experience for NOBL’s clients to
interface with.

The Misinformation and Credible News Analysis Tools requires a safe and
consistent user login system. The user logs in to their campaign with a username
and password given to them by NOBL Media. Auth0 handles the user login by
checking if the account exists and if the password matches the account. After
Auth0 verifies the user’s credentials the page takes the user to the Analysis Tool’s
campaign selection page. One user can have ad campaigns simultaneously.
Once the user chooses a campaign, they will be navigated to that campaign’s
dashboard. Once in the Analysis Tool’s dashboard, users will have access to
campaign information, NOBL scores, as well as data visualization tools.

The dashboard is how users will interface with the Analysis Tool and all of their
campaign data. NodeJS serves as the Analysis Tool’s front end platform that
supports javascript for the website. NodeJS is meant to build input/output,
server side applications. Express.js is a framework built on NodeJS that is meant
to build web applications because it provides routing and middleware services.
Routing means selecting paths for web traffic through multiple networks (GET,
POST, PUT, and DELETE HTTP requests). Middleware receives Request and
Response objects. Gatsby is a React-based Framework that creates static web
pages during build time on the user’s machine. NodeJS, Express.js and Gatsby.js
are the basic building blocks for the web application. The final piece for the
front end of the web app’s visualization is provided by Apache ECharts. Apache

4

ECharts is a visualization library that produces sophisticated graphs and charts.
The visualization of data is important to the web application because it gives
NOBL Media’s clients insight on trends and outliers. NOBL’s clients will be able to
act quickly on trends seen on graphs to improve their ad campaigns.

The web application requires a method for gathering information to populate
the skeleton of the dashboard. The REST API for the web application is the
necessary middle man between the web application and the servers holding all
the campaign information. The web application is using REST API to do the
database queries for the web application to be retrieved from NOBL Media’s
servers. The web application’s REST API retrieves JSON data from NOBL’s servers
to populate the NOBL Scores for NOBL clients’ campaigns as well as provide the
data for the app’s data visualization.

NOBL Media’s client campaign information is all stored in a MySQL server. The
rest of the technologies are meant to be compatible with the NOBL server to
populate the web application with database information, since MySQL is an
environmental requirement.

5

Chapter 3 - Architectural Overview

Figure 3.1 - Overview of the NOBL System

The system is divided into three parts: Auth0, a third-party component that
handles authentication shown in Figure 3.1 in an off-white eggshell color. Note
the absence of an account creation mechanism because all account creations
will take place via direct communication with NOBL.

After authenticating via Auth0, the user will reach the front-end web application
(colored tan-ish yellow in figure 3.1) powered by Gatsby.js, the framework that is
responsible for quickly rendering the static elements of the webpage while
ECharts is used to display the graphical depictions of NOBL’s data. The two
technologies work in tandem to produce the form and functionality of the web
dashboard frontend and are expected to be the main interface to NOBL’s data
that NOBL’s customers make use of.

6

In order to populate the web application with graphical data elements, data is
queried from a MySQL database. The REST API translates HTTP requests into
equivalent SQL queries, queries NOBL’s backend MySQL database (denoted in
darker-tan in Figure 3.1), aggregates the data, and returns the result in JSON
notation for ECharts to process into graphical elements. The API’s responsibility is
not limited to the web application and may be used outside of it for
organizations that wish to process the aggregated data themselves for their
own reports or to display on their own websites.

This interaction between the web application and NOBL’s backend MySQL
database via a REST API forms the core general loop of information flow within
the project. The specific flow of information will be determined by the action the
user takes when using the website. For example deleting a record in the
database skips the aggregation step because there is no data to aggregate.
Instead the index of the deleted record is simply returned.

Another thing to note about figure 3.1 is that it does not depict the
aforementioned technical users who may make use of direct access to the API
and bypass the web dashboard. They can be thought of as existing in the
frontend area given that they will still need to authenticate via Auth0 and query
via the REST API effectively opting for a command line interface to the data as
opposed to a graphical user interface.

Chapter 4 - Module and Interface Description

7

There are a variety of components to this architecture design. It serves as an
overview to a deeper description of software components. Each component
will be described in this chapter.

Section 4.1 - Web Application

Three components are needed for the web application: a login page, a
campaign selection page, and the dashboard page. The components will
provide a familiar interface to NOBL client’s. Aesthetics aside, the web
application’s functionality will allow NOBL clients to analyze and interact with
their campaign data securely and effortlessly.

Login Page

The login page is the user’s first module from the Misinformation and Credible
News Analysis Tool they will interface with. NOBL Media provides clients with a
username and password to login for their businesses account. Once the user
enters their credentials, Auth0 will check if the user exists and if the passwords
match. For security purposes, the login page will not tell users if the email is
incorrect. The login page will present the user with a message saying the
credentials were typed in wrong. If the login credentials are correct, the user will
be sent to the campaign selector page.

Figure 4.1 shows the current team design for the login page. The user is
prompted for their email address (username) and for their password. Should
users find that they have forgotten their passwords, they will be able to reset
their password by clicking the “Forgot Password?” button that is at the bottom in
between the password input form and the continue button.

8

Figure 4.1 - Current implementation of the Login Page

Figure 4.2 shows a state diagram of the user process of logging in. It starts with
the user entering their username and password. Should the user forget their
password, they will have to click on the “Forgot password?” button and will be
then sent a link to reset their password to their email. Once they have clicked
the link and reset their password, they will then have to re-enter their username
and password. Should the user enter their correct email address and password,
authentication will proceed and check if the email address is found and the
password for that specific email address matches the one inputted by the user.
If both are found to be true, then the user is authenticated and can proceed to
the campaign selector page. Should the user fail to authenticate themselves,
they will be prompted with a notification that either their email address or
password were wrong and will have to re-enter them once more.

9

Figure 4.2 - Process diagram for the login page

10

Campaign Selector

NOBL Media clients can have multiple ad campaigns per account. At this point
in the login process, a user will have to pick a single campaign to proceed to
the user dashboard.

Referring to Figure 4.3, the header section of the page is where the
“Organization Name” and the greeting of the day is located. Both the greeting
of the day and where it says “Organization Name” is dynamically displayed,
pulling data from the NOBL database to retrieve the user’s first name and last
name and the organization that the user is under. Additionally, the menu below
the header section is also dynamically created and will only be fully initialized
once the web application has retrieved all the campaigns that the user is
associated with. Additionally, Figure 4.3 also shows the “Confirm” button, grayed
out. This is controlled by the web application so that the button cannot be
clicked by the user before clicking on a campaign. Once a campaign is
selected, which the user will know since it will be highlighted on the menu, the
confirm button will brighten and turn blue making it known that it can be
clicked.

11

Figure 4.3 - Current Implementation of the Campaign Selector Page

Figure 4.4 shows the basic workflow of the campaign selector page. Once the
user has completed the authentication process referred to in Figure 4.2, as soon
as the user is logged in, the web application will start the process at the
beginning of Figure 4.4. In the underlying processes of the web application, the
campaign selector page will connect to the API, which will then go to the REST
API route for campaign data retrieval. The route will then attempt a query to the
database to retrieve all campaign data that the user is associated with. This is
where there are three possible results: an error, no campaigns found, or
campaigns were found. If there is an error, this will be sent back to the web
application and the user will be prompted with an error message. If there are no
campaigns found, the menu section will prompt that no campaigns have been
found for the user and should contact a NOBL administrator. If campaigns are
found, the API will then send the information to the web application. The web
application will then display the campaigns, allowing the user to pick one. Once
the user has picked a campaign and has pressed the confirm button, they will
be sent to the campaign dashboard.

12

Figure 4.4 - User process diagram of the Campaign Selector page

13

Campaign Dashboard

After logging in and choosing an ad campaign users will finally arrive at the
campaign dashboard page. This is the main page users will spend their time on.

The dashboard contains tabs for different campaign information. The main tab
at the top allows the user to switch between their account’s ad campaigns. As
seen on Figure 4.5 there are additional tabs showing different views of the
campaign data. Figure 4.6 shows a close up view of the tabs.

● Overview
○ A summary of all campaign data. Provides a quick look at how the

campaign is performing at this time.
● Toxicity

○ Overall toxicity score of web pages hosting ads.
● Topics

○ Allows users to pick the parameters of data they want to be shown
from the web server.

● Campaign Data
○ Allows users to retrieve specific campaign data in the form of a CSV

file or an excel spreadsheet.

The right side of the dashboard (where the “GraphDemo” placeholder currently
is in Figure 4.5) is where the data visualization will go. The user will be able to
modify the data with the subject tabs. There will also be options for the type of
graph the user will want to use. Users will have the ability to isolate data in a set
timeframe.

The Download now button (seen on the bottom left of Figure 4.5) will allow users
to download the current report on the screen. There will also be an option for
users to get the report in the form of a CSV or Excel file.

14

Figure 4.5 - Current implementation of the Dashboard Page

Figure 4.6 - Current implementation of the Dashboard Sidebar

15

Section 4.2 - API

The back end of this web application consists mainly of two components: the
API and NOBL’s database. The web application’s API is written as a REST API,
which is a common API architectural style using HTTP requests. The API itself will
be the middleman between the web application and NOBL’s database.
Additionally, the API can also become the middleman between the NOBL
customers directly and the NOBL database.

Pertaining to the API, its functionalities are not yet set in stone as the team
discusses the different needs of NOBL customers as well as the web application’s
needs. However, there are several functions that are currently defined within the
API to retrieve specific information that the web application needs.

Client Functions

These are functions pertaining to the retrieval, updating, and creation of NOBL
client data in the database.

1. Create
a. Inserts a new client into the NOBL database
b. Success - Returns an Insert ID
c. Failure - Returns an error

2. Find Specific Client
a. Retrieves a specific client based on the Client ID
b. Success - Returns the an object containing Client ID, Client Name,

Due Interval Hours
c. Failure - Returns an Error

3. Retrieve All Clients
a. Retrieves all clients in the database
b. Success - Returns an object containing Client ID, Client Name, Due

Interval Hours
c. Failure - Returns an Error

16

4. Update Specific Client
a. Changes specific data fields for a specific client
b. Success - Returns nothing
c. Failure - Returns an Error

Datafile Functions

These are functions pertaining to the table that has a one-to-many relationship
to the actual page data that has been scanned and rated by NOBL.

1. Create
a. Inserts a new datafile into the NOBL database
b. Success - Returns an Insert ID
c. Failure - Returns an error

2. Find Specific Datafile
a. Retrieves a specific client based on the datafile ID
b. Success - Returns the an object all data from the specific datafile
c. Failure - Returns an Error

3. Retrieve All Datafiles
a. Retrieves all clients in the database
b. Success - Returns an object containing all datafiles in the database

and their corresponding data
c. Failure - Returns an Error

4. Update Specific Datafile
a. Updates a specific data field(s) for a specific datafile
b. Success - Returns Nothing
c. Failure - Returns an Error

17

Page Functions

1. Create
a. Inserts a new page into the NOBL database
b. Success - Returns an Insert ID
c. Failure - Returns an error

2. Find Specific Page
a. Retrieves a specific page based on the page ID
b. Success - Returns the an object all data from the specific datafile
c. Failure - Returns an Error

3. Retrieve All Pages
a. Retrieves all clients in the database
b. Success - Returns an object containing all pages in the database

and their corresponding data
c. Failure - Returns an Error

4. Update Specific Page
a. Updates a specific data field(s) for a specific page
b. Success - Returns Nothing
c. Failure - Returns an Error

18

Chapter 5 - Implementation Plan

With respect to the modules planned for the project, the implementation needs
to flow in a manner that allows progressive implementation of the project
functionalities from the ground up. This means that the implementation must
flow how the user accesses the web application. Figure 5.1 is the simplification
of the user’s workflow. As a result, the basic modules of the project are:

1. Login Page
2. Campaign Selector
3. Campaign Dashboard

Figure 5.1

The basic foundation of the codebase was implemented starting in November,
in preparation for the tech demo. Using the tech demo, the team was able to
implement the login page using Auth0 without any problems. Up until the start of
the semester, the team was trying to configure basic API functions that allowed
the web application to pull data from the NOBL database. For security
purposes, the database for containing user information is separate from the
NOBL SQL database so that if user information were to be hacked, the sensitive
information about ad campaigns that are tied to the user will not be vulnerable.

Referring to Figure 5.1, the team has completed the interface for the campaign
selector and have currently completed integrating the API into AWS Amplify. The
team had to integrate the API into AWS Amplify so that it is able to access the

19

database without any security issues. Additionally, the team has started creating
the Campaign Dashboard ahead of time as well. During the window for the
Campaign Dashboard, the team will also start integrating the API into the
dashboard as well as granulating the API. Granulating the API means that the
API itself will be able to retrieve specific data from different data fields instead of
only being able to retrieve groups of data programmed by the team. As the
team implements the web application and the API, the team will also be
considering the aesthetics of the web application so that the project will be
presentable to the client. The team is separated into two subgroups, the
front-end team and the back-end team.

After spring break, the team intends to debug and test the application.
Specifically, the team intends to use unit testing to make sure all functions used
in the web application and API outputs the correct results. Additionally, the
team will test all interface functionality to make sure they are working properly.
Once debugging and testing is complete, the team will then refactor the code
to make it as readable as possible as well as expandable by the NOBL team.

Figure 5.2 - Implementation timeline for the project

20

Chapter 6 - Conclusion
Due to the lack of proof that can be shown to NOBL Media customers, NOBL
Media cannot truly show that their service has any benefits. This produces the
problem that the project is intended to solve. The project has two components,
the web application and the API. These two components work together to
achieve the solution to NOBL Media’s problem: show what NOBL’s service
actually provides.

The solution to NOBL Media’s problem requires that the web application be the
interface between the NOBL Media customer and NOBL Media while the API
acts as the connection between the web application and the NOBL Database.
The web application intends to show NOBL Media customers statistics of how
NOBL Media’s service is affecting their ad campaign by way of graphs and
charts. The API is the connection point which transfers data from the NOBL
Database to the web application for rendering. Thus, the two components,
working together, will be able to solve the problem.

Currently, the team is in the middle of implementing the web application and
the API. Specifically, the team has completed the preliminary design of the
Campaign Selector and will now be approved by our client. Furthermore, the
team is now in the process of completing the first iteration of the dashboard.
Additionally, the back-end team is starting on granulating the API, and are in
the process of tying the API with the front-end. The team is extremely satisfied
with the progress being made and cannot wait to present the final results to our
client by the second week of March!

